

DriverPower: a tool for computational cancer driver discovery

Documentation

	Tutorial with example data
	0: Download example data

	1: Install Python and DriverPower

	2: Make response tables

	2: Build the background mutation rate model

	3: Infer driver candidates

	4: Misc.

	Installation guide
	Install from pypi

	Install from source

	Command-line interface
	The model sub-command

	The infer sub-command

	Data format
	Response table (--response)

	Feature table (--feature)

	Feature importance table (--featImp)

	Functional score table (--funcScore)

	Model and model information files (output of model)

	Result table (output of infer)

License

DriverPower is distributed under the terms of the GNU General Public License v3.0 [https://github.com/smshuai/DriverPower/blob/master/LICENSE]

Tutorial with example data

DriverPower aims to identify cancer driver candidates from somatic variants of a tumour cohort. The minimal number of
samples required in the PCAWG study is 15. However, more samples will have more power to detect rare driver events.
Both whole-genome sequencing and panel sequencing variants can be used.

The basic test unit accepted by DriverPower is called a genomic element, which is a set of disjoint (or continuous)
genomic regions (see the figure below). In our manuscript, we also removed all blacklist regions to reduce the effect of
variant artifacts.
In the real world, a genomic element can be all exons of a gene, or all TF binding sites among a promoter etc.

[image: _images/genomic_element.png]
Typically 1K to 100K genomic elements are tested together such as ~20K genes in the human genome.
For each element, given its functional impact, mutational burden as well as thousands of features, DriverPower will
report a p-value and q-value associated with that element.

0: Download example data

Our example data are hosted on figshare [https://figshare.com/projects/DriverPower_Dataset/36065], on which you can find the following files:

	random_mutations.tsv.gz [14 MB]: randomized whole-genome somatic mutations from 50 patients.

	train_feature.hdf5.part1 [4 GB]

	train_feature.hdf5.part2 [4 GB]

	train_feature.hdf5.part3 [900 MB]

	test_feature.hdf5 [1.4 GB]

	train_elements.tsv.gz [7 MB]

	test_elements.bed12.gz [6 MB]

	callable.bed.gz [5 MB]: whitelisted genomic regions used in DriverPower; can be substituted with a chromosome length file (BED format) to use the entire genome.

Important

You can run DriverPower for your own data by simply replacing
random_mutations.tsv with your mutations.

The training features has been divided into three parts,
so you will need to merge them:

cat train_feature.hdf5.part1 train_feature.hdf5.part2 train_feature.hdf5.part3 > train_feature.hdf5
md5sum train_feature.hdf5 # should be cb4af6bc7979efa087955f94909dd065

1: Install Python and DriverPower

For this tutorial, we used a brand new virtual machine with 15 CPUs and 125GB RAM.
The OS we used is Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-33-generic x86_64).

To install Python3 using Anaconda3 if you don’t already have:

This is the most recent version as of 2018-09-07
wget https://repo.anaconda.com/archive/Anaconda3-5.2.0-Linux-x86_64.sh
You may need sudo to run this
./Anaconda3-5.2.0-Linux-x86_64.sh
. .bashrc
[Optional] Create a new environment for DriverPower
conda create --name driverpower
[Optional] Activate the environment
source activate driverpower

Then we can install required packages and DriverPower:

conda install pytables
conda install -c conda-forge xgboost
conda install -c bioconda pybedtools
pip install driverpower

2: Make response tables

The response (y; dependent variable) table records the observed number of mutations, number of mutated samples and the length per genomic element.
This table is required for both model (training) and infer (test) sub-commands.

You can make them easily using our helper script prepare.py. Inputs will be mutations and elements:

Get the helper
wget https://raw.githubusercontent.com/smshuai/DriverPower/master/script/prepare.py
Training responses
python ./prepare.py random_mutations.tsv.gz train_elements.tsv.gz callable.bed.gz train_y.tsv
Test responses
bedtools bed12tobed6 -i ./test_elements.bed12.gz | cut -f1-4 > test_elements.tsv
python ./prepare.py random_mutations.tsv.gz test_elements.tsv callable.bed.gz test_y.tsv

2: Build the background mutation rate model

The background mutation rate (BMR) model is used to estimate the expected number of somatic mutations for each genomic element,
given its features. DriverPower sub-command model is used to train BMR models. To build the BMR model, training features
(X) and responses (y) are required. DriverPower supports two algorithms for the BMR model, generalized linear models (GLM)
and gradient boosting machines (GBM).

Here we show how to build a GBM with our example data:

mkdir output
driverpower model \
 --feature train_feature.hdf5 \
 --response train_y.tsv \
 --method GBM \
 --name tutorial \
 --modelDir ./output

You should see the following log info (taking ~3 hours on our VM):

09/08/2018 20:42:37 | INFO: Welcome to DriverPower v1.0.1
09/08/2018 20:42:59 | INFO: Successfully load 1373 features for 867266 bins
09/08/2018 20:43:05 | INFO: Use 867266 bins in model training
09/08/2018 20:43:14 | INFO: Split data fold 1/3
09/08/2018 20:43:19 | INFO: Split data fold 2/3
09/08/2018 20:43:25 | INFO: Split data fold 3/3
09/08/2018 20:43:31 | INFO: Training GBM fold 1/3
[0] eval-poisson-nloglik:114024
Will train until eval-poisson-nloglik hasn't improved in 5 rounds.
[100] eval-poisson-nloglik:25279.4
.......omit many lines.............
Stopping. Best iteration:
[1128] eval-poisson-nloglik:1.38992

09/08/2018 23:56:35 | INFO: Model metrics for training set: r2=0.63, Variance explained=0.63, Pearson'r=0.79
09/08/2018 23:56:42 | INFO: Job done!

3: Infer driver candidates

DriverPower can be used to find driver candidates with or without
functional information. This step will use the model file ./output/tutorial.GBM.model.pkl
from last step.

We first show how to call driver candidates without functional information,
aka, burden-test only:

driverpower infer \
 --feature test_feature.hdf5 \
 --response test_y.tsv \
 --model ./output/tutorial.GBM.model.pkl \
 --name 'DriverPower_burden' \
 --outDir ./output/

To use functional information, one or more types of functional measurements (e.g., CADD, EIGEN, LINSIGHT etc)
need to be collected first. The CADD scores can be retrieved via its
web interface [https://cadd.gs.washington.edu/score] (up tp 100K variants each time) without downloading the
large file for all possible SNVs (~80 G). If you have more than 100K variants, you can either split your file and run
the web app multiple times, or download the large file and try tabix.
Other scores can be obtained using a similar method after download.
After obtaining the per-mutation score, you can calculate the average score per element, which will be used by DriverPower.

Here we show how to score 1,000 mutations and calculate per-element score:

We omit INDELs here; but CADD can score INDELs in VCF format
zcat ./random_mutations.tsv.gz | \
awk 'BEGIN{OFS="\t"} $4 != "-" && $5 != "-" {print $1,$3,".",$4,$5}' | \
head -1000 | gzip > random_mutations.1K.vcf.gz
Upload formatted variants (random_mutations.1K.vcf.gz) to CADD's web interface
and download the result file (something like GRCh37-v1.4_f8600bd0c0aa23d4f6abc99eb8201222.tsv.gz).
#####
Intersect the score file (we use the PHRED score) with test elements
zcat ./GRCh37-v1.4_f8600bd0c0aa23d4f6abc99eb8201222.tsv.gz | \
tail -n +3 | awk 'BEGIN {OFS="\t"} {print "chr"$1, $2-1, $2, $6}' | \
bedtools intersect -a ./test_elements.tsv -b stdin -wa -wb > CADD_ele.tsv
The 4th column is the element ID and the 8th column is the CADD PHRED score
printf "binID\tCADD\n" > CADD_per_ele_score.tsv
bedtools groupby -i ./CADD_ele.tsv -g 4 -c 8 -o mean >> CADD_per_ele_score.tsv

We can now supply the per-element score file to DriverPower and call driver candidates:

driverpower infer \
 --feature test_feature.hdf5 \
 --response test_y.tsv \
 --model ./output/tutorial.GBM.model.pkl \
 --name 'DriverPower_burden_function' \
 --outDir ./output/ \
 --funcScore CADD_per_ele_score.tsv \
 --funcScoreCut "CADD:0.01"

4: Misc.

TODO

Installation guide

DriverPower requires Python >= 3.5 and some other computing packages.
If you don’t have Python 3.5 or higher, we recommend to install Python with Anaconda [https://www.continuum.io/downloads].

Install from pypi

You can install DriverPower from the
Python Package Index (PyPI) [https://pypi.python.org/pypi/DriverPower/]
by simply typing the following command in your terminal:

$ pip install driverpower

Important

DriverPower requires XGBoost [https://github.com/dmlc/xgboost] for building gradient boosting machines. pip may not install XGBoost correctly especially for OS X owing to C++ compiler issue. See XGBoost installation guides [https://pypi.python.org/pypi/xgboost/] for more information.

Install from source

You can also download the latest source [https://github.com/smshuai/DriverPower/releases/latest/] from GitHub to install.
For example, to install version 1.0.0:

$ tar -xzf DriverPower-1.0.0.tar.gz
$ cd DriverPower-1.0.0/ && pip install .

See the importance note above if you have issue with the XGBoost installation.

Command-line interface

DriverPower uses a command-line interface.
To view available sub-commands and usage of DriverPower, type

$ driverpower -h
usage: driverpower [-h] [-v] {model,infer} ...

DriverPower v1.0.0: Combined burden and functional impact tests for coding
and non-coding cancer driver discovery

optional arguments:
 -h, --help show this help message and exit
 -v, --version Print the version of DriverPower

The DriverPower sub-commands include:
 {model,infer}
 model Build the background mutation model
 infer Infer driver elements

The model sub-command

The model sub-command is used to build the background mutation model with training data.
Command-line options for this command can be viewed as follows:

$ driverpower model -h
usage: driverpower model [-h] --feature str --response str [--featImp str]
 --method {GLM,GBM} [--featImpCut float]
 [--gbmParam str] [--gbmFold int] [--name str]
 [--modelDir str]

optional arguments:
 -h, --help show this help message and exit

input data:
 --feature str Path to the training feature table (default: None)
 --response str Path to the training response table (default: None)
 --featImp str Path to the feature importance table [optional]
 (default: None)

parameters:
 --method {GLM,GBM} Algorithms to use (default: None)
 --featImpCut float Cutoff of feature importance score [optional] (default:
 0.5)
 --gbmParam str Path to the parameter pickle [optional] (default: None)
 --gbmFold int Train gbm with k-fold, k>=2 [optional] (default: 3)
 --name str Identifier for output files [optional] (default:
 DriverPower)
 --modelDir str Directory of output model files [optional] (default:
 ./output/)

	Input

	Required data: --feature and --response for training elements.

	Optional data: --featImp.

	Output

	all output files are in --modelDir.

	[name].GLM.model.pkl: the GLM model file.

	[name].GBM.model.fold[k]: the GBM model files.

	[name].[GLM|GBM].model_info.pkl: the corresponding GLM or GBM model information.

	[name].feature_importance.tsv: the feature importance table, which is returned when no input --featImp.
For GLM, feature importance is the number of times a feature is used by randomized lasso.
For GBM, feature importance is the average gain of the feature across all gradient boosting trees.

Important

Please DO NOT rename the model files because their names are recorded in model information.
Model files can be moved to another directory as long as --modelDir is specified in infer.

	Parameters

	--method: [required] method used for the background model. Must be GLM or GBM.

	--featImpCut: [optional] cutoff for feature importance score.
Features with score >= cutoff will be used in the model. Only used for GLM. Default is 0.5.

	--gbmParam: [optional] path to the parameter pickle for GBM.
The pickle file must contain a valid python dictionary for
XGBoost parameters [https://github.com/dmlc/xgboost/blob/master/doc/parameter.md].

	--gbmFold: [optional] Number of model fold to train for GBM. Fold must be an integer >= 2. Default value is 3.

	--name: [optional] Prefix for output files. Default is ‘DriverPower’.

	--modelDir: [optional] Directory for output model and model information files. Default is ‘./output/’.

	Notes

	Input data requirements can be found at data format.

	--gbmFold controls the split of training data by k-fold cross-validation.
For example, default 3-fold model means the training data are divided into 3 equal folds.
Each time, two folds of data are used to train the model and
the rest fold is used to validate the model.
Hence, three model files will be generated at the end. The prediction will then be the average of three models.

	Training phase can take hours for large training set and consume a large amount of memories.
For example, using our default training set (~1M elements and 1373 features),
training randomized lasso plus GLM with single core takes about 2-10 hours and 80G RAMs.
Training 3-fold GBM with 15 cores takes about 10-24 hours and 80G RAMs.

	The default pickle file for --gbmParam is generated as follow:

import pickle

Default parameter for XGBoost used in DriverPower
param = {'max_depth': 8,
 'eta': 0.05, # learning rate
 'subsample': 0.6,
 'nthread': 15, # number of threads; recommend using the number of available CPUs
 'objective': 'count:poisson',
 'max_delta_step': 1.2,
 'eval_metric': 'poisson-nloglik',
 'silent': 1,
 'verbose_eval': 100, # print evaluation every 100 rounds
 'early_stopping_rounds': 5,
 'num_boost_round': 5000 # max number of rounds; usually stop within 1500 rounds
 }

Dump to pickle
with open('xgb_param.pkl', 'wb') as f:
 pickle.dump(param, f)

The infer sub-command

The infer sub-command is used to call drivers from test data with pre-trained models.
Command-line options for this command can be viewed as follows:

$ driverpower infer -h
usage: driverpower infer [-h] --feature str --response str --modelInfo str
 [--funcScore str]
 [--method {auto,binomial,negative_binomial}]
 [--scale float] [--funcScoreCut str] [--geoMean bool]
 [--modelDir str] [--name str] [--outDir str]

optional arguments:
 -h, --help show this help message and exit

input data:
 --feature str Path to the test feature table (default: None)
 --response str Path to the test response table (default: None)
 --modelInfo str Path to the model information (default: None)
 --funcScore str Path to the functional score table [optional]
 (default: None)

parameters:
 --method {auto,binomial,negative_binomial}
 Test method to use [optional] (default: auto)
 --scale float Scaling factor for theta in negative binomial
 distribution [optional] (default: 1)
 --funcScoreCut str Score name:cutoff pairs for all scores
 e.g.,"CADD:0.01;DANN:0.03;EIGEN:0.3" [optional]
 (default: None)
 --geoMean bool Use geometric mean in test [optional] (default: True)
 --modelDir str Directory of the trained model(s) [optional] (default:
 None)
 --name str Identifier for output files [optional] (default:
 DriverPower)
 --outDir str Directory of output files [optional] (default:
 ./output/)

	Input

	Required data: --feature and --response for test elements; --modelInfo from driverpower model.

	Optional data: --funcScore. Only required for test with functional adjustment.

	Output

	Driver discovery result saved in "[outDir]/[name].result.tsv".

	Parameters

	--method: [optional] probability distribution used to generate p-values (binomial, negative_binomial or auto).
Default is auto, which means decision will be made automatically based on the dispersion test of training data.

	--scale: [optional] scaling factor of theta for negative binomial distribution.
The theta is calculated from dispersion test. Default is 1. Only used for negative binomial distribution.

	--funcScoreCut: [optional] Cutoff of each functional impact scores.
The format of this parameter is a string in “NAME1:CUTOFF1;NAME2:CUTOFF2…”,
such as “CADD:0.01;DANN:0.03;EIGEN:0.3”.
Cutoff must in (0,1] and the name must match column names of --funcScore.

	--geoMean: [optional] Whether to use geometric mean of nMut and nSample in test. Default is True.

	--modelDir: [optional] Directory of model files from driverpower model.
Only required when models have been moved to a different directory.

	--name: [optional] Prefix for output files. Default is ‘DriverPower’.

	--outDir: [optional] Directory for output files. Default is ‘./output/’.

	Notes

Data format

Response table (--response)

The response (y; dependent variable) table records the observed number of mutations, number of mutated samples and the length per genomic element. This table is required for both model (training) and infer (test) sub-commands.

	Format: TSV (tab-delimited text) with header. Compressed tables are also accepted.

	Fields:

	binID: identifier of genomic element and used as key.

	length: effective length of the element.

	nMut: number of observed mutations.

	nSample: number of observed samples with mutations.

	N: total number of samples.

	Example:

	binID

	length

	nMut

	nSample

	N

	TP53.CDS

	
	
	
	

	KRAS.CDS

	
	
	
	

	…

	…

	…

	…

	…

Feature table (--feature)

The feature (X; independent variable) table records genomic features per element.
This table can be large (~10GB) for thousands of features and ~1M genomic elements.
This table is required for both model (training) and infer (test) sub-commands.

	Format:

	TSV (or compressed TSV) with header. Loading may be slow for large datasets.

	HDF5 [https://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5] (*.h5 or *.hdf5). The HDF5 must contain key X, which is the feature table in pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html]. Used for fast loading.

	Fields:

	binID: identifier of genomic element and used as key.

	Column 2+: one feature per column. Unique feature names are required.

	Example:

	binID

	GERP

	E128-H3K27ac

	…

	TP53.CDS

	4.80287

	1.19475

	…

	KRAS.CDS

	3.56563

	2.53435

	…

Feature importance table (--featImp)

The feature importance table records the feature importance score derived from randomized lasso, gradient boosting machine or other algorithms.
This table can be used together with the --featCut argument to specify features kept in the background model.
This table is only used and optional for the model sub-command with method GLM.
If not provided, DriverPower will generate and output it automatically.

	Format: TSV (or compressed TSV) with header.

	Fields:

	name: name of features, should match the column name in feature table.

	importance: feature importance score.

	Example:

	name

	importance

	GERP

	0.3

	E128-H3K27ac

	0.5

	…

	…

Functional score table (--funcScore)

The functional score table records the functional impact score per genomic element.
DriverPower can work with any functional impact score scheme.
This table is only used and optional for the infer sub-command.

	Format: TSV (compressed TSV) with header.

	Fields:

	binID: identifier of genomic element and used as key.

	Column 2+: one type of functional impact score per column.

	Example:

	binID

	CADD

	EIGEN

	…

	TP53.CDS

	4.80287

	1.19475

	…

	KRAS.CDS

	3.56563

	2.53435

	…

Model and model information files (output of model)

Result table (output of infer)

Index

Quick start

Step 0: Define the task

DriverPower aims to identify cancer driver candidates from somatic variants of a tumour cohort. The minimal number of
samples required in the PCAWG study is 15. However, more samples will have more power to detect rare driver events.
Both whole-genome sequencing and panel sequencing variants can be used.

The basic test unit accepted by DriverPower is called a genomic element, which is a set of disjoint (or continuous)
genomic regions (see the figure below). In our manuscript, we also removed all blacklist regions to reduce the effect of
variant artifacts.
In the real world, a genomic element can be all exons of a gene, or all TF binding sites among a promoter etc.

[image: _images/genomic_element.png]
Typically 1K to 100K genomic elements are tested together such as ~20K genes in the human genome.
For each element, given its functional impact, mutational burden as well as thousands of features, DriverPower will
report a p-value and q-value associated with that element.

Step 1: Prepare the data

DriverPower runs on processed training and test data as described in data format.

Step 2: Build the background mutation rate model

The background mutation rate (BMR) model is used to estimate the expected number of somatic mutations for each genomic element,
given its features. DriverPower sub-command model is used to train BMR models. To build the BMR model, training features
(X) and responses (y) are required. DriverPower supports two algorithms for the BMR model, generalized linear models (GLM)
and gradient boosting machines (GBM).

See the model sub-command for all parameters and notes. Example code snippets are as follows:

Train a generalized linear model with feature selection by randomized lasso

$ driverpower model \
 --feature PATH_TO_X \
 --response PATH_TO_y \
 --method GLM

Train a gradient boosting machine with default parameters

$ driverpower model \
 --feature PATH_TO_X \
 --response PATH_TO_y \
 --method GBM

Step 3: Call the driver candidates

Call driver candidates with CADD scores

$ driverpower infer \
 --feature PATH_TO_X \
 --response PATH_TO_y \
 --modelInfo PATH_TO_model_info \
 --funcScore PATH_TO_func_score \
 --funcScoreCut 'CADD:0.01' \
 --name 'DriverPower' \
 --outDir ./output/

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 DriverPower: a tool for computational cancer driver discovery

 		
 Tutorial with example data

 		
 0: Download example data

 		
 1: Install Python and DriverPower

 		
 2: Make response tables

 		
 2: Build the background mutation rate model

 		
 3: Infer driver candidates

 		
 4: Misc.

 		
 Installation guide

 		
 Install from pypi

 		
 Install from source

 		
 Command-line interface

 		
 The model sub-command

 		
 The infer sub-command

 		
 Data format

 		
 Response table (–response)

 		
 Feature table (–feature)

 		
 Feature importance table (–featImp)

 		
 Functional score table (–funcScore)

 		
 Model and model information files (output of model)

 		
 Result table (output of infer)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/genomic_element.png
Regions
of interest

Blacklist
regions

A genomic
element

_static/ajax-loader.gif

